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ABSTRACT 
Natural antioxidants are helpful in the prevention of human diseases. The objective 

of this study is to isolate the potential protein fractions from Acrochaetium sp. as an 

antioxidant. Fractions were obtained by proteolytic digestion using α-chymotrypsin, 

pepsin, trypsin, thermolysin individually and in combination of two enzymes, then 

centrifuged using 3 kDa molecular weight cut-off (MWCO) ultrafiltration membrane 

and fractionated by reversed-phase high performance liquid chromatography (RP-

HPLC). The 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) assay was used to 

measure the antioxidant activity. Result showed that thermolysin hydrolysate and 

the combination of trypsin-thermolysin hydrolysates had the highest antioxidant 

activity compared to the other hydrolysates with IC50 value of 1.48±0.92 mg/mL and 

1.37±0.84 mg/mL after fractionated using 3 kDa MWCO ultrafiltration membrane. 

Fractionation using RP-HPLC resulted fraction 7 obtained from thermolysin 

hydrolysates showed the highest antioxidant activity with IC50 value 0.58±0.56 

mg/mL and fraction I obtained from trypsin-thermolysin hydrolysates showed the 

highest antioxidant activity with IC50 value 0.38±0.33 mg/mL. The protein fractions 

from Acrochaetium sp. hydrolysates as antioxidant still has not been reported 

previously, therefore it can indicated as a potential therapeutic source for reducing 

oxidative stress.  
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INTRODUCTION 

The key cause of the pathogenic disorders and various chronic diseases is oxidation. The oxidative reaction 

is not only deteriorates the quality of food products, but also lead to various chronic diseases such as 

hypertension, cancer and Parkinson’s disease. Cellular damage is caused by the high level of oxidative stress due 

to significant imbalance between the antioxidant defense system and free radicals [1, 2]. Free radicals attacks on 

protein, lipids and nucleic acids which lead to weakening of the antioxidant enzymes and lipid peroxidation [3]. 

The easiest way to prevent these diseases from human body is consume vegetables, seed, and fruits to increase 

the antioxidant capacity in human body. An antioxidant is a substance which inhibits oxidation of the substrate 

at low concentration compared to that of an oxidizable substrate [4]. Antioxidants are widely applied to 

medicine, chemical industries, and important food additive which are mainly used to prevent the oxidation of 
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fats and also avoid nutrition of food damaging, browning and fading by capture and neutralize the free radicals 

[5].  

Currently, synthetic antioxidants such as butyl hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 

tertiary butyl hydroquinone (TBHQ) and propyl gallate (PG) are added to food products to retard lipid oxidation, 

thus inhibit the generation of reactive oxygen species (ROS). The synthetic antioxidants must be used under 

strict regulation due to their potential health hazards and when compared to natural antioxidants, natural 

antioxidants are more favored in the present life because of their pure nature, high security, non-toxicity and 

have strong antioxidant capacity [6, 7]. Therefore, there is an interest in developing natural antioxidants. 

Recently, more studies have been carried out to find antioxidant in various natural products, such as seed 

of pea [8], chickpea [9], peanuts kernels [10] and corn [11]. Several studies about marine organism as antioxidant 

also have been carried out, such as yellow stripe trevally [12], muscle of ornate threadfin bream [13], pacific hake 

[14], aquatic species [15], capelin [16], muscle proteins of harp seal [17] and rhodophyta [18].  

Marine algae are sustainable resources in marine ecosystems and mostly used as a source of food and 

medicine. Algae biomass has been used for centuries as food and medicine. Major compounds in algae are 

polysaccharides, phenolic and phlorotannins, protein, peptides and essential amino acids, lipids, terpenoids and 

steroids, vitamins and minerals [19, 20]. Algal biomass and algae-derived compounds have a very wide range of 

potential applications for nutrition and health products. Some algae are considered as rich sources of natural 

antioxidants. Macroalgae have received muchattention as potential natural antioxidants and there has been 

very limited information on antioxidant activity of macroalgae [21]. Among macroalgae, the antioxidant activity 

of Acrochaetium sp. used in this study is rarely reported. Acrochaetium sp. is a rhodophyta which distribute in 

Taiwan, South America, Atlantic Islands, Indonesia and Africa [22]. 

Currently, there is attention to the function and bioactivities of protein and its hydrolysates from food 

sources that may be used as an alternative source in the prevention of some diseases. Besides, food proteins 

have been known as bio-molecule that plays an important role in human improvement with their well-known 

nutritional values [23]. Peptides derived from food proteins can be a great source of antioxidants due to its 

aromatic rings, excessive donor electrons and appropriate hydrophobic character [24]. Enzymatic hydrolysis is 

the most reliable and an effective method to produce peptides with functional properties [25]. 

In this study, Acrochaetium sp. protein isolate was hydrolyzed using single (α-chymotrypsin, pepsin, 

trypsin, thermolysin) and in combination enzymatic processes. The aims of this study were to generate 

Acrochaetium sp. protein hydrolysates, fractionate the hydrolysates using RP-HPLC and evaluate the potential 

antioxidant activity of these samples using DPPH assay. 

MATERIAL AND METHODS 

 
Sample Preparation 

Salt, sediment, and organic debris from Acrochaetium sp. were removed using fresh water. Algae were 

carefully rinsed with freshwater and dried at 40 
o
C for 2 h and ground to obtain a powder with a particle size 

lower than 1 mm and finally stored at 4 °C in plastic bags for further analysis. 

 

Protein extraction, digestion, and ultrafiltration 

The dried powder of Acrochaetium sp. was dissolved in 20% of trichloroacetic acid (TCA) for 12 h at 4 °C. 

The TCA was removed using acetone and the pellet was lyophilized. The dried protein then was hydrolyzed by 

α-chymotrypsin (37 °C), pepsin (37 °C), thermolysin (60 °C) and trypsin (37 °C) for 16 h. Acrochaetium sp. was also 

digested by various combinations of enzymes, for each enzyme was incubated for 3 h. The reaction was stopped 

by heating the mixture and then fractionated into < 3 kDa MWCO. The filtrate was collected and lyophilized for 

further analysis. 

 

Fractionation of Acrochaetium sp. Protein Hydrolysate by RP-HPLC 

Acrochaetium sp. protein hydrolysate was eluted by 5% acetonitrile (ACN) and 0.2% FA in deionized water 

and fractionated by reverse-phase high performance liquid chromatography (RP-HPLC, Hitachi Chromaster, 

Tokyo, Japan).  The mobile phase of buffer A (5% ACN and 0.1% TFA in deionized water) and buffer B (95% ACN 

and 0.1% TFA in deionized water). Twenty microliters of < 3 kDa hydrolysates was loaded at a flow rate of 1 

mL/min. Absorbance of the fractions was monitored at 214 nm. 
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DPPH Radical Scavenging Assay 

DPPH radical scavenging assay was measured according to Yu et al. [26]. Fresh DPPH solutions (0.1 mM 

DPPH in purified ethanol) were prepared daily. The samples, which comprised 100 μl samples with 100 μl of 

DPPH solution in a 96-well plate, was mixed and incubated for 30 min in the dark at room temperature. The 

absorbance was measured by using ELISA at 517 nm (AS). Ethanol was used as the blank (Ab), and distilled water 

was used as the control (AC). The DPPH radical scavenging activity was calculated according to the following 

equation: 

 
where Ab is the absorbance of the blank, AS is the absorbance of the sample solution, and AC is the 

absorbance of the control. 

 

Statistical Analysis 

Data was expressed as the mean ± standard deviation (mean ± SD). The analysis was done by using one way 

ANOVA in SPSS 16.0 (Chicago, SPSS Inc.) followed by post-hoc Duncan
’s
 test and accepted at the P<0.05 level to 

identify the significant differences among treatments. 

 

RESULTS AND DISCUSSION  
 

Generation of free radicals and lipid peroxidation often occur in biological and food systems. In biological 

systems, antioxidants as part of the defense mechanism can prevent oxidative damage [27] and free radical 

generation by pro-oxidative from environment such as air pollutant, ultraviolet radiation, and cigarette smoke 

[28]. Recently, there is increased interest in naturally bioactive compounds as alternatives to synthetic 

substances, even these naturally compounds often show lower activity than the synthetic substances, but they 

are nontoxic and do not leave any residues [20]. As reported by Margaret et al. [29], bioactive peptides can be 

released by enzymatic proteolysis of food proteins, therefore pancreatic enzymes; chymotrypsin and trypsin 

have been used for derivation of bioactive peptides. 

Enzymatic hydrolysis is the most effective method to produce peptides with functional properties; in this 

study we used several proteases individually and in combination. As shown in Figure 1, thermolytic hydrolysate 

of Acrochaetium sp. possessed the highest scavenging of DPPH radicals than other proteases (57.40%). These 

results are consistent with the previous studies suggested that thermolysin is specifically catalyzes peptide 

bond containing hydrophobic and aromatic amino acid, which potential as antioxidant peptide [30].  In this 

study, we also used the combination of two enzymes and resulted the combination of thermolysin-trypsin had 

the highest scavenging of DPPH radicals compared with other combination of different enzymes, as shown in 

the Figure 2. Besides thermolysin catalyzes peptide bond containing hydrophobic and aromatic amino acid, the 

using of trypsin also contribute the releasing of amino acids (2-20 residues) which formed antioxidant peptides 

and immobile in parent protein [24].  

Bioactivity of protein hydrolysates is mainly affected by the molecular weight of the peptides. The 

molecular weight of hydrolyzed protein is one of an important factor in producing protein hydrolysates [31]. 

The thermolysin hydrolysate and thermolysin-trypsin hydrolysate was fractionated by ultrafiltration with 

molecular weight cut-off (MWCO) membranes of < 3 kDa. The IC50 values of the thermolysin hydrolysate were 

1.83±0.95 mg/mL (> 3 kDa) and 1.48±0.92 mg/mL (< 3 kDa) (Figure 3). The thermolysin-trypsin hydrolysate 

showed the IC50 values of 1.70±1.03 mg/mL (> 3 kDa) and 1.37±0.84 mg/mL (< 3 kDa) (Figure 4). Ultrafiltration 

membrane system was used to separate the hydrolysates into defined molecular weight ranges. It holds well in 

purification of simple peptides from various crude protein hydrolysates [32, 33]. The isolated peptide fractions 

showed higher antioxidant activity than the hydrolysate [34]. This indicated that the peptide generation plays 

an important part in antioxidant potential of proteins. Purification step will affect the IC50 value, it indicated 

that the lower and more purified molecule has higher inhibition rate, more purified the molecule, and the IC50 

will be decreased. 

RP-HPLC involves the separation of molecules on the basis of hydrophobicity. The separation depends on 

the hydrophobic binding of the solute molecule from the mobile phase to the immobilized hydrophobic ligands 

attached to the stationary phase. RP-HPLC (detected at 214 nm under an UV-vis detector) was further used to 

fractionate the antioxidant peptides and the Acrochaetium sp. was separated into 12 fractions (fraction 1-12 for 

the thermolysin hydrolysate and fraction A-L for the thermolysin-trypsin hydrolysate) as shown in the Figure 5 
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and 7. Each fraction was collected; freeze dried, and determined its antioxidant activity. As shown in Figure 6, 

fraction 7 exhibited the highest DPPH free radical scavenging activity with the inhibition (57.29%) and among 12 

fractions for thermolysin-trypsin hydrolysate of Acrochaetium sp., fraction I showed the highest DPPH free 

radical scavenging activity (64.54%) (Figure 8). Furthermore, the IC50 value was tested for fraction 7 and fraction 

I. Fraction 7 from Acrochaetium sp.  hydrolysate using thermolysin had IC50 value of 0.58±0.56 mg/mL and in the 

other hand; fraction I from Acrochaetium sp. hydrolysate using thermolysin-trypsin had IC50 value of 0.38±0.33 

mg/mL (Figure 9). These results showed higher antioxidant activity compared by the other marine organisms, 

such as Theragra chalcogramma (1.3 mg/mL) [35], Thunnus tonggol (5 mg/mL) [36], Gadus morhua (2.5 mg/mL) [37], 

and Navodon septentrionalis (10 mg/mL) [38]. 

 
 

 

 
Figure 1. DPPH radical scavenging activity (%) of Acrochaetium sp. enzymatic hydrolysate using different single 

enzyme. 

 

 

 
Figure 2. DPPH radical scavenging activity (%) of Acrochaetium sp. enzymatic hydrolysate using different 

combination of two enzymes (Chy: α-chymotrypsin; Pep: Pepsin; The: Thermolysin; Try: Trypsin). 
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Figure 3. (A) IC50 value of Acrochaetium sp. hydrolysate using thermolysin (> 3 kDa) and (B) (<3 kDa). 
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Figure 4. (A) IC50 value of Acrochaetium sp. hydrolysate using thermolysin-trypsin (> 3 kDa) and (B) (<3 kDa). 

 

 

 

 
Figure 5. RP chromatogram of thermolysin hydrolysate of Acrochaetium sp. 
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Figure 6. DPPH radical scavenging activity (%) of Acrochaetium sp. fractions using thermolysin. 

 

 

 
Figure 7. RP chromatogram of thermolysin-trypsin hydrolysate of Acrochaetium sp. 

 

 

 
Figure 8. DPPH radical scavenging activity (%) of Acrochaetium sp. fractions using thermolysin-trypsin. 
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Figure 9. (A) IC50 value of fraction 7 from thermolysin hydrolysate and (B) IC50 value of fraction I from 

thermolysin trypsin hydrolysate. 

 

 

CONCLUSION 
 

The bioactivities of Acrochaetium sp. as antioxidant used in this study is rarely reported. Peptide fractions 

showing highly antioxidant, and it obtained from the enzymatic hydrolysates using thermolysin and 

thermolysin-trypsin, respectively. Fraction obtained by ultrafiltration showed an antioxidant higher than the 

whole hydrolysate. Fractionation using RP-HPLC resulted fraction 7 from Acrochaetium sp. hydrolysate using 

thermolysin had IC50 value of 0.58±0.56 mg/mL and fraction I from Acrochaetium sp. hydrolysate using the 

combination of thermolysin-trypsin had IC50 value of 0.38±0.33 mg/mL. Due to increasing concerns about the 

safety antioxidants, Acrochaetium sp. protein hydrolysates represent a novel source of natural antioxidant 

hydrolysates and antioxidant peptides. Further works such as the identification of the peptide from the fraction 

using LC-MS/MS, simulated gastrointestinal simulation and antioxidant activity are also suggested. 
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