Editorial Team

Editor-in-Chief: Parham Jabbarzadeh Kaboli
PhD of Molecular Biology and Cancer researcher; Faculty of Medicine and Health Sciences, University Putra, Malaysia (Website; Emails: researchgroups@drugdiscovery.ir)

Managing Editor: Yusuf Kaya
PhD, Professor of Biology, Atatürk University, Erzurum, (Website, Email: ykaya@atauni.edu.tr)

Executive Editor: Zohreh Yousefi
PhD candidate, Biosystematics, Atatürk University, Erzurum, Turkey (Emails: zohreh.yousefi12@ogr.atauni.edu.tr)

Language Editor: Samuel Stephen Oldershaw
Master of TESOL, The Humberston School & The Grimsby Institute, Nuns Corner, Grimsby, North East Lincolnshire, United Kingdom (Email: s.s.oldershaw@hotmail.com)

Associate Editors

Aleksandra K. Nowicka
PhD, Pediatrics and Cancer researcher; MD Anderson Cancer Center, Houston, Texas, USA (Email: aknowicka@mdanderson.org)

Paola Roncada
PhD, Pharmacokinetics, Residues of mycotoxins in food and in foodproducing species, University of Bologna, Italy (Email: paola.roncada@unibo.it)

Tohid Vahdatpour
PhD, Assistant Prof., Physiology, Islamic Azad University, Iran (Website; Scopus; Emails: vahdatpour@iaushab.ac.ir)

Veghar Hejazi
MD, Tabriz University of Medical Sciences, Tabriz, Iran (Email: vegharhejazi@gmail.com)

Nefise Kandemir
MD, PhD, Department of Medical Genetics, Erciyes University, Kayseri, Turkey

Reviewers

Abolghasem Yousefi
PhD, Assistant Professorof Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran (Website; Email: avousefi@gmail.com)

Aleksandra K. Nowicka
PhD, Pediatrics and Cancer researcher; MD Anderson Cancer Center, Houston, Texas, USA (Email: aknowicka@mdanderson.org)

Amany Abdin
PhD, Pharmacology; MSc, Medical Biochemistry; Tanta University, Egypt (Emails: amanyabdin@med.tanta.edu.eg, amanynhr@hotmail.com)

Babak Yousefi
Physician, General Surgery Resident at Hamedan University of Medical Science, Hamedan, Iran

Fazal Shirazi
PhD, Infectious Disease researcher at MD Anderson Cancer Center, Houston, Texas, USA

Fikret Çelebi
Professor of Veterinary Physiology; Atatürk University, Turkey (Website; Email: fncelebi@atauni.edu.tr)
Join JLSB Team

Journal of Life Sciences and Biomedicine (JLSB) as an international journal is always striving to add diversity to our editorial board and operations staff. Applicants who have previous experience relevant to the position they are applying for may be considered for more senior positions (Section Editor) within JLSB. All other members must begin as Deputy Section Editors before progressing on to more senior roles. Editor and editorial board members do not receive any remuneration. These positions are voluntary.

If you are currently an undergraduate, M.Sc. or Ph.D. student at university and interested in working for JLSB, please fill out the application form below. Once your filled application form is submitted, the board will review your credentials and notify you within a week of an opportunity to membership in editorial board.

If you are PhD, assistant, associate editors, distinguished professor, scholars or publisher of a reputed university, please rank the mentioned positions in order of your preference. Please send us a copy of your resume (CV) or your ORCID ID or briefly discuss any leadership positions and other experiences you have had that are relevant to applied Medical and Pharmaceutical Researches or publications. This includes courses you have taken, editing, publishing, web design, layout design, and event planning. If you would like to represent the JLSB at your university, join our volunteer staff today! JLSB representatives assist students at their university to submit their work to the JLSB. You can also, registered as a member of JLSB for subsequent contacts by email and or invitation for a honorary reviewing articles.

Contact us at: editors@jlsb.science-line.com

Download Application Form (.doc)
A Study on the Composition, Agro Ecosystem Use and Socio Economic Role of Homegarden in Selected Kebeles of Haramaya District, Oromia Regional State, Eastern Ethiopia.

Arayaselassie AS.

Abstract

Homegardens believed to be more diverse and provide multiple services for household than other mono cropping system and this is due to the combination of crops, trees and livestock. The study focused on the composition, structure of homegarden, diversity of plant species and contribution of homegarden to household food security, socio-economic importance. From the total of twenty kebeles, Gode, Damota, Tennike and Finkille kebeles were selected using lottery method. In a reconnaissance survey made in the kebeles from October 10-25 2016 four sites were selected purposively. Totally 80 households which are home garden users were selected for this study. Socio-economic data and potential economic and agro-ecosystem role of home garden agro forestry were collected by using structured questionnaire, focus group discussion and semi structured interview. The family size of respondents ranges from 2-12. There is a strong correlation between the farm land holding and the size of the homegarden. Nine tree species were identified in the study area. The homegardens were covered with fruits and other plants before 20 years ago but now there is complete change on the vegetation cover. The dominant species in the area is chat (Catha edulis). The regression analysis made to identify determination of annual income showed that income from home garden and numbers of species in the home garden have strong correlation with annual income at P < 0.05. Home garden agro forestry significantly at P < 0.05 improved the farmer's cash income. With insignificant garden size; home garden practice provides good socio-economical and agro-ecological service for the farmers which have higher implication for climate change adaptation and family level food security.

Keywords: Agro Forestry, Composition, Household Food Security, Socio-Economic, Agro-Ecological Role

[Full text-PDF] [XML]

Causes, Control and Prevention Methods of Pregnancy Toxemia in Ewe: A Review.

Kelay A and Assef A.

Abstract

Pregnancy toxemia, also known as ovine ketosis, twin-lamb disease or gestational toxemia is a metabolic disease affecting pregnant ewes. The objective of this review is to highlight possible causes and predisposing conditions of pregnancy toxemia in ewe and to indicate successful control and prevention methods of the disease. English articles published from 1983 to date was searched with Google using toxemia, pregnancy, ewe, treatment, prevention, ketosis and diagnosis as key terms. The increased requirement for energy during pregnancy, accompanied by inadequate nutrition to meet metabolic requirement is the underlying cause of the disease. This negative energy balance initiates the onset of excessive lipid metabolism and ketosis, and eventually causes hepatic lipidosis. An excess of ketone bodies can occur in both poor and good conditioned sheep and in fact, excessively fat ewes can be more prone to pregnancy toxemia. Moreover, conditions that interrupt feed intake, such as storms, hauling or other diseases can also induce this metabolic disease. Affected sheep exhibit weakness and depression, usually within the last six weeks of pregnancy. It has seen more often in older ewes and those carrying multiple fetuses. Pregnancy toxemia is almost never observed in replacement ewe-lambs or yearlings lambing for the first time. If untreated, the disease progresses, causing neurological signs and eventually death. Therefore, Understanding the causes, pathogenesis, prevention and treatment of this disease is important in preventing production loss in sheep farming operations.

Keywords: Beta-hydroxybutyrate, Ewe, Ketosis, Pregnancy Toxemia

[Full text-PDF] [XML]
The Journal of Life Science and Biomedicine is aimed to improve the quality and standard of life with emphasis on the related branches of science such as biology, physiology, biochemistry, zoology, anatomy, pathology and their applications and innovations in medicine and healthcare...

http://jlsb.science-line.com

» JLSB indexed/covered by NLM Catalog, RICeST (ISC), Ulrich's™, SHERPA/RoMEO, Genamics, Google Scholar (h-index= 10), Index Copernicus, ICV2015: 66.26... details

» Open access full-text articles is available beginning with Volume 1, Issue 1.

» Full texts and XML articles are available in ISC-RICeST.

» This journal is in compliance with Budapest Open Access Initiative and International Committee of Medical Journal Editors' Recommendations.

» High visibility of articles over the internet.

» Publisher Item Identifier ...details

» This journal encourage the academic institutions in low-income countries to publish high quality scientific results, free of charges... view Review/Decisions/Processing/Policy
A Study on the Composition, Agro Ecosystem Use and Socio Economic Role of Homegarden in Selected Kebeles of Haramaya District, Oromia Regional State, Eastern Ethiopia

Arayaselassie A. S.

Haramaya University, College of Agriculture and Environmental Science, School of Animal and Range Sciences, P.O. Box 138, Dire Dawa, Ethiopia

Corresponding author’s Email: pbbmaraya@gmail.com

ABSTRACT

Homegardens believed to be more diverse and provide multiple services for household than other mono cropping system and this is due to the combination of crops, trees and livestock. The study focused on the composition, structure of homegarden, diversity of plant species and contribution of homegarden to household food security, socio-economic importance. From the total of twenty kebeles, Gode, Damota, Tennike and Finkille kebeles were selected using lottery method. In a reconnaissance survey made in the kebeles from October 10-25 2016 four sites were selected purposively. Totally 80 households which are home garden users were selected for this study. Socio-economic data and potential economic and agro-ecosystem role of home garden agro forestry were collected by using structured questionnaire, focus group discussion and semi structured interview. The family size of respondents ranges from 2-12. There is a strong correlation between the farm land holding and the size of the homegarden. Nine tree species were identified in the study area. The homegardens were covered with fruits and other plants before 20 years ago but know there is complete change on the vegetation cover. The dominant species in the area is chat (Catha edulis). The regression analysis made to identify determination of annual income showed that income from home garden and numbers of species in the home garden have strong correlation with annual income at $P<0.05$. Home garden agro forestry significantly at $P<0.05$ improved the farmer’s cash income. With insignificant garden size; home garden practice provides good socio-economical and agro-ecological service for the farmers which have higher implication for climate change adaptation and family level food security.

INTRODUCTION

Home garden agro forestry has been documented as an important source of food and nutritional security throughout the world [1]. Home gardening is an ancient and widespread practice all over the world which is found both rural and urban areas. It is predominantly taken as small scale subsistence agricultural system [2]. It is being practice in Asia, Africa and Latin America predominantly which serves the society for economic and immediate food source [3]. Home garden play important role in ecological and socio ecological system comprising domestic plants and crops [4]. Home gardens are known for their structural complexity and diversity of crops and plant species [3].

Home garden are one of the major practice known by the local community for their ecological sustainability and diversification of livelihood system creation [5]. The socio economic and agro economic roles includes wide range of products such as: firewood, fodder spices, medicinal plants and ornaments including food [6,7]. It is also belived that home garden contribute ecological and conservation functions like formation and maintenance of soil structure, retention of soil moisture and recycling of nutrients that help in mitigating climate change [8]. The land use system involves management of multipurpose trees and annual and perennial agricultural crops within compound of individual house [9].

In Ethiopia, where most of the population is farmer (80%) which depends on agriculture for their livelihoods and contributes 42-45% of the total GDP of the country [10]. Haramaya district is one of the districts found in Eastern HarargheOromia regional state and the area is known for its productivity. The local communities in the study area are farmers and employed workers of different NGOs and government offices even if they are...
employed they practice home gardening in their home. In Haramaya district, home gardening mostly practiced through combination of Chat (chat adulu) with different crop species such as: Sorghum (*Sorghum*), maize (*Zea*), and variety of fruit types. Chat is widely cultivated cash crop which is used as immediate source of income and. The average monthly income of the family practice chat cultivation ranges from 500 birr to 533 birr [11]. The study aimed at identifying the composition, agro ecosystem use and socio economic role of home garden in the district.

MATERIAL AND METHODS

Description of the study area

Location. Haramaya district is part of Ethiopian highland and lies in the semi-arid tropical belt of eastern Hararghe zone. The Woreda is bordered on south by Kurfachelle, on west by Kersa, on the north by Dire Dawa, on the east by Kombolcha and on the south east by Harar regional state. The district has the total area of 550 km² and comprises three smaller towns; namely Haramaya (the main town), Adele and Bate. In addition, there are 25 rural kebeles in the district. Haramaya district is noted for its intensive agricultural practices and cropping system Figure 1. Its astronomical location lies roughly between 90° 20' - 90° 35' North latitude and 41° 51' - 42° 04' East longitude.

![Figure 1. Map of the study area](image)

Population

Total population of district is about 271,018; of whom 138282 are male and 132736 are females. 50,032 populations are urban dwellers and the remaining are rural dwellers. Area of the district is about 550 sq.kilometers. The largest ethnic groups are Oromo (96.04%) and Amhara (3.12%). All others ethnic groups made up of 0.84% of the population. The first language spoken in district is Afan Oromo about 95% and 4.44% is spoke Amharic and remaining 0.56% spoke other languages. The majority of inhabitants are Muslims about 95.82% and remaining 3.71% are orthodox and other religious followers [11].

Topography

Topography of the district is generally characterized by gentle slope. Altitude of the district is range from 1400-2340 meters above sea level. The highest point places in the district are Dof and Jaldo. 60.1% of land are cultivatable, 2.3% are pasture land, 1.5% are forest and 36.1% are degraded or unusable (Haramaya Agriculture and Rural Development office, 2015).

Types of vegetation and fruit in study area

Studied garden were growing and cultivating plants as parts of horticulture and others. These include: carrot (*Daucus carota*), coffee (*Coffea arabica*), maize (*Zea mays*), mango (*Mangifera indica*), orange (*Citrus sinensis*), onion (*Allium cepa*), pea (*Pisum sativum*), sorghum (*Sorghum bicolor*) and others. For fencing purpose Bargemoadii (*Eucalyptus camaldulensis*), Wedessaa (*Cordia africana*) and Bargemodemaa (*Eucalyptus globulus*) were exhibited in the area. Shrubs found in the area include *Lanatanacamara* (Yewefkolo) which is an invasive exotic species found in the area and farmers used it for fencing their garden. These are some of the major species found in the locality (Haramaya Agriculture and Rural Development office, 2015).

Climate

Climatically, the district falls within midland and lowland agro ecological zone. The mean annual temperature is about 22°C with maximum temperature about 31°C and minimum temperature about 12°C. The mean annual rain fall ranges between 700-1350mm³ (National Metrology Agency NMA2015) (Figure 2).

Based on the agro-climatologically classification, Haramayaworeda has WoinaDega (wet and cool, 70%) and Kolla (dry and hot 30%) areas. Haramaya district lies between 1900 to 2450 m.a.s.l. These altitudinal ranges gave the district Dega5 and Woinadega6 agro-ecological zones. The mean annual rainfall is 74.1mm, with mean annual temperature of 16.9°C. The dry season, with relatively less than 30 mm of rain fall per month, extends from October to February. The main autumn rain occurs from September to November while the smaller spring rain occurs from March to May.

Figure 2. Climate condition of study area

Sampling Method

For the study probability sampling method was employed. Among 25 kebeles in the district four Kebeles were selected using lottery method to give each kebele a chance to be included. The selected kebeles were Gode, Damota, Tennike and Finkille. In a reconnaissance survey made in the kebeles from October 10-25 2016 a potential village from each kebele was identified purposively. In this study, key informants and households were involved to assess importance of homegarden for socio economic and to determine the composition of homegarden. Key informants for the study were identified on the basis of number of years stayed in the area (individuals who concurred a land for more than 20 years). This was done due to the fact that the research also examines the role of homegarden for ecological maintenance also to determine the pats ecosystem. The key informant selection was adopted from Ewuketu Linger [12], accordingly during village reconnaissance, six farmers were randomly asked. Out of 24 candidates of key informants the six top ranking were selected at each village. Finally, from village 20 households were picked randomly making 20 kebele and 80 key informants for the entire study.

Data collection method

Based on information from interview of key informants, questionnaires were designed to collect data on the role of home gardens for socio-economic and agro-ecosystem maintenance and associated implication were also collected. In addition key informants were also made to respond about the condition which was 20 years ago, 10 years ago and current states of the home garden. The local community was also engaged in FGD to isolate the major socio economic benefits of home garden and to create an image of the area of 20 years back and 10 years back.

63
Data Analysis Method

The data which was collected from key informant’s interview and from focused group discussions was analyzed by simple descriptive statistics (e.g. percentage, frequency, tables and graphs). Home garden are different in their structure direction of occurrence and vegetation type and use in each local community. The analysis follows as procedure that each home garden data was collected by considering these facts. The quantitative data which was obtained from the closed ended items were coded and subjected to SPSS version 24 for further analysis of data. Regression analysis was made to identify the annual income from home garden and numbers of species in the home garden.

RESULTS AND DISCUSSION

Socio-economic characteristics of the respondents

Age structure of respondents. The age category of the respondents were classified into three categories: young age (<18 years old), adult age (19-50 years old) and old age (>50 years old). It is revealed that the majority of the respondents were in the middle age category 60 (75%). This finding is adequate to the national statistics indicating that the selected homesteads were typical homestead of the country (Table 1). In this study 80 participating households, 64 (80%) were male headed whereas the remaining 16 (20%) were female headed. The number of male households is greater than that of female households so the households in the study are more patriarchal.

Family Size

Family size of the respondents ranged from 2 to 12 and classified in to three categories as small (2-4 members), medium (5-10 members), and large (more than 10 members). Data indicates that 75 (60%) of the respondents were in medium size family which was also a representative of typical family size in eastern Ethiopia. It is very common to live together with parents and with brothers and sisters and sometime with relatives. The education level of the households shows that 48 (60%) were illiterates where they don’t read or write, whereas 16 (20%) of them were literates, that can read and write. The rest of the respondents 12 (15%) of them finished primary school education and 2 (2.5 %) respondents each were with secondary education and TVET educational background respectively (Table 2).

Table 1. Age structure of respondents

<table>
<thead>
<tr>
<th>Age</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><18 years old</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19-50</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>>50 years old</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 2. Educational level of respondents

<table>
<thead>
<tr>
<th>Educational level</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illiterate</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>Read and write</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Primary education</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Secondary education</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>TVET</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

Home garden size

In the study area different size of homegardens were reported for simplicity the homegarden were categorized in to three groups. The scale was adopted from Asfaw and Woldu [13]. Which is 0.1-1.5 hectare small land holders, 1.6-3 hectare medium size land holders and above 3.5 ha large size land holders. The study reviled that the size of the home garden ranges from 0.2-0.5 hectare in Gode, 0.3-0.5 hectare in Damota, 0.1-0.4 hectare in Tinike and 0.2-0.5 ha in Finkele. As it is shown the size of the home gardens in each sample kebele is deferent except Gode and Fenekele. Largest home garden size exhibited in Damotakebele were the home garden ranges from 0.3 up to 0.5 (Table 3). The average size of homegarden was found to be different within each land categories and village. The category of farm yard was categorized in to three parts as larger, medium and small land holding. The average size of land holding for larger farm yard was 3.548 ha while the land holding for

medium and small farm category were 1.16 and 0.81 ha respectively. On the other hand, the average homestead size for large category was 0.43 ha whereas the medium and small categories were 0.25 and 0.1 ha respectively. Strong correlation (r = 0.8124) was observed between the farm yard of farmers and the size of homegarden.

As the data indicates in table 4 among the total of 80 household respondents 70 (87.5%) households produce cereals whereas 10 (12.5%) of them are producing crop through integrated perennial trees in their gardens. In case of the location and arrangement of the homegardens the data show that the spatial arrangement is variable at the study site. About 53 (67%) of the home garden are located on the backyard whereas 12% are located on the front side. Among studied home garden 57 (71%) were partially fenced, 20 (25%) were fenced and 3 (4%) were not fenced.

The nine tree species which were recorded and identified in the study area are: buna (coffee arabica), Gaattiraa (cupressuslusitanica), Bargemoadii (Eucalyptus camaldulensis), waddeesa (Cordia africana), Burtukaana (citrus sinesis), Mangoo (Mangiferaindica), Papaya (Carica Papaya), Jankaraanda (Jacaranda mimosifolia), Bargemodima (Eucalyptus globulus) and chat (Catha edulis). The most dominant tree species were mango (Mangiferaindica), papaya (Carica Papaya), chat (Catha edulis), Bargemood (Eucalyptus camaldulensis) and Bargemodimaa (Eucalyptus globulus) in the contrary less common species were Gaattiraa (cupressuslusitanica), Jacaranda (Jacaranda mimosifolia) and orange (citrus sinesis).

Livestock and homegarden relation

Number of livestock reared in each kebeles varies both in type and quantity. Finkilekebele rears high quantity of livestock than others kebeles which is 75% sheep, 10% Goats, 7% poultry and 5% cattle and donkey 3%. In Gode the community rare 66% sheep, 15% Goats, 10% poultry and 9% cattle were as in Tinkekebele the farmer’s rare 70% sheep, 18% goats, 9% poultry, 2% cattle and 1% are donkey respectively. In Damota, 40% sheep, 54% goats, 4% cattle and 2% donkey are respectively (Figure 3).

Table 3. Size of home garden in hectare

<table>
<thead>
<tr>
<th>Kebele</th>
<th>Garden size in hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gode</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>Damota</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td>Finke</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>Tinnike</td>
<td>0.1-0.4</td>
</tr>
</tbody>
</table>

Table 4. Structure of home garden in the study areas

<table>
<thead>
<tr>
<th>Home garden structure</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use and style of homegarden</td>
<td>Cereals without trees</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Integrated perennial trees and crop</td>
<td>10</td>
</tr>
<tr>
<td>Spatial arrangement of the home garden</td>
<td>Back yard</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Onside</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Front side</td>
<td>10</td>
</tr>
<tr>
<td>States of the home garden</td>
<td>Partially fenced</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Not fenced</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 3. Frequencies of livestock in four kebeles

States of home gardens

The participants in FGD described that the establishment of home gardens goes to the time of revolution in Ethiopian history. The participants agreed that the land formation in the country which is during the Dergu regime (1974). In related to the past experience of home gardens the overall size ranges from 0.2-0.485 ha in the average of the four kebeles. According to the information from FGD the homegardens were covered by cereal/cash crops. Before 20 years, most garden were covered by sorghum (*Sorghum bicolor*) and maize (*Zea mays*) for local use chat were planted. Ten years back, most cereal crop species were introduced soybean (*Glycine max*), pea (*Pisum sativum*), the coverage of Chat increased by more than half of the home garden size as compared to the previous year’s coverages explained by the respondents. Currently, species like potato (*Solanum tuberosum*), sugarcane (*Saccharum officinarum*), onion (*Allium cepa*), maize (*Zea mays*), sorghum (*Sorghum bicolor*), cabbage (*Brassica integrifolia*) and soya bean (*Glycine max*) were found but the farmers prioritize chat of other cereals and vegetables as cash crop.

Agro ecosystem role

Home garden plays an important role for agro ecosystem service mainly through providing raw material. The respondents confirm that the amount of compost produced varies due to raw material (weed, grass and tree leave) availability within the homegardens. From the semi structured interview 95% of respondents (n=76) confirm that fertility status of soil stays up to minimum of three years and maximum of four years. The respondents also responded that the homegardens, in addition to soil moisture conservation it’s also provide fuel wood source which interns lead to less farm crop residual biomass removal also less dependence on animal dung for fuel. The mentioned importance’s in FGD leads to the decrease in the investments of money for inorganic fertilizer.

As observed, the impacts of demography on the agro-ecosystem were high because in most villages numbers of the family size is large. Repeated cultivation of land exhausts mineral and other important materials from the soil and requests the farmers for extra money to buy inorganic fertilizer. This decreases the family income from garden product and also trampling effects of the family on growing garden crops. In study area, about 81% of the farers use animal manure and 19% use compost prepared from plant residues and other use chemical fertilizers.

The study reveals that fertility of garden is higher in home garden than main farm yard. The fertility of the lands were described with their productivity rate that the productivity of the home garden is much better than that of the farm land. According to the information from the questionnaire home garden are much fertile due to their nearness to the home where animal manures are damped and this garden were easily conserved than main farm yard.

Socio-economic role

As described by respondents in FGD, homegardens have wide socio economic roles, which includes production of food (both for consumption and for income generation), medicinal plants, and source for fire wood, fodder production and service as compost production. The farmers use both hired labors and family labors in their home garden and they use selected seed of different crop species that tolerate climate variability. Only few farmers use chemical fertilizers and most of the farmers use animal dung as result, the income generate is high as roughly calculated with their expenses.

The income of homegarden owners is determined by different factors. The regression analysis made to identify determination of annual income showed that income from home garden and numbers of species in the home garden have strong correlation with annual income at P<0.05 (Table 5). This implies that the income is more dependent on home garden vegetation composition.

<table>
<thead>
<tr>
<th>Determinants</th>
<th>Coefficient</th>
<th>Std dev.</th>
<th>t-ratio</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1427.37</td>
<td>2908.63</td>
<td>-0.993</td>
<td>0.323</td>
</tr>
<tr>
<td>Education level</td>
<td>185.33</td>
<td>1.06</td>
<td>0.954</td>
<td>0.342</td>
</tr>
<tr>
<td>HG income</td>
<td>0.19</td>
<td>12529.57</td>
<td>11.92</td>
<td>0.000**</td>
</tr>
<tr>
<td>No. of spp in HH</td>
<td>87.52</td>
<td>6.04</td>
<td>2.548</td>
<td>0.012**</td>
</tr>
<tr>
<td>Number of cattle</td>
<td>31.03</td>
<td>2.26</td>
<td>0.343</td>
<td>0.732</td>
</tr>
<tr>
<td>Farm size</td>
<td>253.87</td>
<td>0.84</td>
<td>1.075</td>
<td>0.285</td>
</tr>
<tr>
<td>Family size</td>
<td>16.3</td>
<td>2.43</td>
<td>0.218</td>
<td>0.827</td>
</tr>
<tr>
<td>Age</td>
<td>20.69</td>
<td>8.63</td>
<td>0.905</td>
<td>0.367</td>
</tr>
</tbody>
</table>

R^2=32%, **significant at 5% (0.05)

Social role of homegardens

Number of respondents in FGD and semi structured interview confirms that having homegarden strength neighbors and family relationship. Household gave some home garden products like fruit, vegetable and chat to their relatives and neighbors at different ceremony. This increases social relationship and sharing of different working experience create positive relationship within the society that will help in sharing indigenous and other scientific knowledge.

DISCUSSION

The practice of homegardening is serves as a source of social and economic benefit. In Haramaya district homegardens used as a source of income and as a means of generating good relationship with the neighborhood. The same result has been reported in Arifin et al. [4] in Zimbabwe homegardens user farmers. The practice of homegardening has been developed primarily in response to the needs for generating income and for fulfilling household food security. In Ethiopia most of the fruits, vegetables, and fuel wood come from the homesteads or marginal lands attached to or near homestead [12].The same idea was reported in the study area that most of the source of the fuel wood, fruit and vegetable came from the homegardens. The dominant trees in the area also show similar trend as Asfaw and Woldu [12] study that the cash crops are mostly found in the homegardens than farm yards. In addition according to Asfaw and Woldu [12] the study estimated that 3 million ha of the homestead provided 80% of fruits and 85% of fuel wood to the urban and other society. Similarly the nearby community and homegarden owners’ source of vegetables, cash crops and fruits are homegardens of this kebeles.

The practice of homegardening has been developed primarily in response to the needs for generating income and for fulfilling household food security. In Ethiopia most of the fruits, vegetables, and fuel wood come from the homesteads or marginal lands attached to or near homestead [12]. The same idea was reported in the study area that most of the source of the fuel wood, fruit and vegetable came from the homegardens. The land used for homegardens was small as compared to other areas in the country. According to Asfaw and Nigatu [13] survey of the homegardens, the homegardens in the other parts of the country is much bigger than the study area. Since the space limitation in the homestead is reflected in the land size of the homegardens, The T value of the study also indicates that the income is directly related to the homegardens size which is similarly indicated in the study by Asfaw and Nigatu [13]. Haramaya district homegardens are the source of fuel woods and other sources. The homegardens were also an important source of fuel wood, particularly for poor households, supplying from 40% to 80% of the rural need [14]. In a similar manner these homegardens are the sources fuel wood for the local community and the nearby urban dweller. Traditional homegarden has many desirable characteristics which is indicated in Tynsong and Tiwari [15]’s work which is in line with the study result. According to Tynsong and Tiwari [15] and Regeena [17] homegardens strengthen the social bond in a society through sharing knowledge and ideas. In the study area the same idea was reflected during FGD and key informant interview about the use of homegarden for the local community.

CONCLUSION

Homegarden enhances livelihood of the local people by providing socio-economic, agro ecosystem and agro ecological roles. Advantage of homegarden to socio economic development of society was clearly seen from the results. In addition the immediate income is generated from the homegardens. The improvement of the homegarden intern helps the urban dweller and the local community to have quality of livelihood. The contribution of homegarden for the production of different resources food, fuel wood, medicinal plant and stimulant plants is high. The states of homegarden is at alarming rate, are at the verge of extinction in most of the areas the homegarden are turning to be mono-cropping, chat dominated homegardens due to high pricing of chat.

The government and non-government organization should work jointly with local farmers in changing the production of items by using management technology of horticulture and agro forestry under multi-storied cropping system. If the family size keep looking like this homegarden will be vanished so family planning has to be practiced. Different trainings and demonstrations are mandatory to keep the homegardening practice in the villages. So the University and other stakeholders has to work together to achieve this goal.

DECLARATIONS

Acknowledgements

This work was financed by the author itself.

Authors’ Contributions

The author made most of the research work by itself and for collection students were participated.

Competing interests

The authors declare that they have no competing interests.
REFERENCES

10. Zenebe G. 2011. Climate change and Ethiopian economy. A computable general equilibrium analysis, Environment for development

11. CSA (Central Statistical Agency) 2015: most of woreda income from cultivation of Chat in 2015

Causes, Control and Prevention Methods of Pregnancy Toxemia in Ewe: A Review

Ashenafi Kelay and Aschalew Assefa

University of Gondar; College of Veterinary Medicine and Animal Sciences; Department of Animal Production and Extension, Gondar, Ethiopia. P. O. Box 196

Corresponding author’s Email: ashu.eth2006@gmail.com

ABSTRACT

Pregnancy toxemia, also known as ovine ketosis, twin-lamb disease or gestational toxemia is a metabolic disease affecting pregnant ewes. The objective of this review is to highlight possible causes and predisposing conditions of pregnancy toxemia in ewe and to indicate successful control and prevention methods of the disease. English articles published from 1983 to date was searched with Google using toxemia, pregnancy, ewe, treatment, prevention, ketosis and diagnosis as key terms. The increased requirement for energy during pregnancy, accompanied by inadequate nutrition to meet metabolic requirement is the underlying cause of the disease. This negative energy balance initiates the onset of excessive lipid metabolism and ketosis, and eventually causes hepatic lipidosis. An excess of ketone bodies can occur in both poor and good conditioned sheep and in fact, excessively fat ewes can be more prone to pregnancy toxemia. Moreover, conditions that interrupt feed intake, such as storms, hauling or other diseases can also induce this metabolic disease. Affected sheep exhibit weakness and depression, usually within the last six weeks of pregnancy. It has seen more often in older ewes and those carrying multiple fetuses. Pregnancy toxemia is almost never observed in replacement ewe-lambs or yearlings lambing for the first time. If untreated, the disease progresses, causing neurological signs and eventually death. Therefore, Understanding the causes, pathogenesis, prevention and treatment of this disease is important in preventing production loss in sheep farming operations.

INTRODUCTION

Among domestic farm animals metabolic diseases achieve the greatest importance in dairy cows, pregnant does and ewes. In other species these disease occur only sporadically. If the continued nutritional demand of pregnancy is exacerbated by an inadequate diet in the dry period, the incidence of metabolic disease increases. The effect of pregnancy is particularly important in ewes, especially those caring more than one lamb [1].

Pregnancy toxemia, also known as ketosis, is the most commonly occurring metabolic disease of sheep and goats that occurs in late pregnancy. It commonly occurs in the last 6 weeks of gestation which causes significant economic losses and high mortality rate in pregnant ewes. It is most prevalent in ewes carrying two or more lambs or in very fat ewes. Ketosis is caused by a disturbance in carbohydrate usage in the animal [2]. As ewe’s pregnancy progresses, the energy demands of her body increase. At the same time, the capacity of her rumen shrinks since her growing lambs in the uterus take up more and more space inside leaving less space for the rumen [2, 3]. This combination can result in the ewe not receiving sufficient energy, through her diet. As a result she will have to resort to breaking down her own body tissues, usually fat, in order to provide energy for her growing lambs, thus releasing ketones (a toxic byproduct of fat breakdown) into her bloodstream. When this occurs too rapidly, the ewe’s body cannot detoxify the ketones fast enough and ketosis or pregnancy toxemia results. Ketosis can also occur when the ewe is too fat since fat also takes up room inside of the sheep resulting in less space for the rumen to hold feed. Additionally, conditions that interrupt feed intake, such as storms, hauling or other diseases, can also induce this metabolic disease [4].
Ewes with ketosis are lethargic and have a poor appetite for the last 1 to 2 weeks of pregnancy. They also tend to have poor muscle control and balance. A classic symptom is sweet-smelling (ketotic) breath. Sheep may also grind their teeth. As the disease progresses, the neurological systems become compromised due to lack of glucose. Hence, encephalopathy results from depressed glucose metabolism in the brain [5]. Blindness, stargazing, tremors, aimless walking and ataxia are seen and eventually the ewes become comatose and are unable to rise. Death usually follows within a few days [6].

The determination of blood glucose and beta hydroxyl butyric acid (BHBA) concentrations is very important for early diagnosis [7]. If pregnancy toxemia is diagnosed in the early stages, medical treatment can be successful [5, 6]. But the treatment of advanced pregnancy toxemia is usually unsuccessful [8]. In general Pregnancy toxemia, once develop result in stop eating, nervous sign, blindness, and eventually death so reviewing Pregnancy Toxemia in ewe important to know and avoid the predisposing condition, to prevent and control the disease occurrence besides to prevent production losses. The objective of this review is therefore to highlight possible causes, predisposing conditions of pregnancy toxemia successful control and prevention methods of pregnancy toxemia in ewe.

METHODS

A systematic review of English articles published from 1983 to date was conducted using Google. All articles related to the topic was also included without any preference to types of journals and publishers. Search terms included were toxemia, pregnancy, Sheep, ewe, treatment, prevention, ketosis and diagnosis.

RESULTS AND DISCUSSION

Etiology

The cause of pregnancy toxemia is a metabolic disturbance of Carbohydrate or sugar and fats during the final stage of pregnancy [9]. This disturbance is caused by low glucose concentration in the blood and excessive breakdown of body fat to compensate glucose deficiency. Ketones are the toxic by-products produced during this rapid breakdown of fat and it is possible to test for their presence in the ewe's urine. Inadequate nutrition during the last 6 weeks of pregnancy is the primary cause of low blood sugar as ewes cannot consume enough feed or energy to meet the demands of their growing fetuses. This is because approximately 70% of fetal growth occurs during the last 6 weeks of pregnancy [10].

Over-conditioned (BCS 4 or more) ewes are also susceptible to pregnancy toxemia because of fat in their abdominal region. In such fat ewes there isn't enough room in the gut for the ewes to eat sufficiently and there is an excessive fat resource for breakdown resulting in ketosis. Under-conditioned (BCS 2 or less) ewes are also susceptible because they cannot eat enough to meet their own nutritional needs, let alone the added burden of developing fetuses [4].

Epidemiology

Occurrence. It occurs in all parts of the world. With the drive to increase lambing percentages and margins dependent on feed costs, particularly in intensively farmed lowland flocks, the problem has become widespread. The disease is rarely seen under extensive production systems [5]. In part, this is because the breeds of sheep used in intensive farming are more likely to bear twins or triplets. Since the disease most often affects ewes/does pregnant with twins or triplets, it is characterized by low blood sugar. In contrast, sheep breeds in extensive grazing systems commonly bear single lambs and significant outbreaks of pregnancy toxemia are uncommon except where there is drought or poor pasture management. In general, the incidence of pregnancy toxemia is greater in ewes with more than one fetus during the last 6 weeks of gestation [1].

Many farmers will be faced with a few cases annually, but in certain years up to 40% of ewes in a flock may be affected [5]. Death occurs in 2-10 days in about 80% of the cases. The incidence in a flock varies with the nature and severity of the nutritional deprivation and the proportion of the flock at risk. It can be very high in starvation Pregnancy toxemia, whereas fat ewe pregnancy toxemia is generally of sporadic occurrence. In outbreaks that follow management procedures or other stressors, clinical disease is not manifested until 48 hours and afterwards new cases will develop over several days. The natural incidence in intensively farmed sheep is approximately 2% of pregnant ewes but where there are sever managemental deficiencies of the
disease, it may affect the majority of late pregnant ewes. The case fatality is high unless treatment is initiated early in the clinical course. It causes 100% ewe mortality and High neonatal mortality in untreated case. Even with early treatment case fatality can be high [1].

Risk factors

Pregnancy. The primary predisposing cause of pregnancy toxemia is inadequate nutrition during late gestation, usually due to insufficient energy density of the ration and decreased rumen capacity as a result of fetal growth. The disease occurs only in ewes in the last 6 weeks of pregnancy, usually during the last month, with the peak incidence in the last 2 weeks of pregnancy. This is because in the last 6 weeks of gestation the requirement of metabolizable energy rises dramatically. It occurs primarily in ewes carrying twin lambs because twin pregnancy increases susceptibility of ewes to hypoglycemic stress and Pregnancy toxemia. For example, ewes carrying twins require 1.9 times more energy than ewes with singles and ewes with triple fetuses require 2.3 times more energy than ewes with singles [11]. Pregnancy toxemia may also affect ewes bearing a single large lamb [12].

Body condition. Poor body condition, old age, obesity and low body weight are other predisposing factors for the onset of the disease. During late gestation, in the presence of obesity, the abdominal space is filled with accumulated fat and an expanding uterus. Because of lack of rumen space, these females have difficulty in consuming enough feedstuff to satisfy their energy requirements [13]. Ewes with poor body condition also cannot eat enough to meet their own nutritional needs and the energy requirement of their fetuses [4]. This is because susceptible thin ewes are chronically offered with inadequate ration, and in the face of increasingly insufficient energy to meet increasing fetal demands, the ewe mobilizes more body fat with resultant ketone body production and hepatic lipidosis [11].

Diseases. Presence of other diseases like; foot rot, foot abscess and parasites can also influence the onset of pregnancy toxemia. Because such conditions acutely curtail feed intake [14] so that the animal becomes in negative energy balance.

Environmental stress. Environmental stressors such as cold weather and rain increase the energy demand of the pregnant ewe so that induces stress (acute) syndrome [15]. Transportation, shearing, crutching or drenching also cause stress and may contribute to the onset of the disease.

Parity. Clinical cases are typically limited to older goats and ewes during their second or subsequent pregnancies. The disease is uncommon in maiden ewes because of their low fecundity and increases in prevalence up to parity three [10].

Breed. In sheep and goats, pregnancy toxemia is much more common in highly prolific selected breeds [16]. Breed differences largely reflect differences in fecundity and differences in management systems. For instance, the disease is more common in British lowland breeds and their crosses than the Merino. On the other hand, British hill breeds are traditionally believed to be more resistant to the development of pregnancy toxemia in the face of nutritional deprivation of the ewe but resistance is achieved at the expense of lamb birth weight and has the penalty of higher neonatal mortality. There are however, differences in the susceptibility of individual sheep that appears to be related to differences in rates of hepatic gluconeogenesis [1].

Pathology

Pathogenesis. In late gestation, the liver increases gluconeogenesis to facilitate glucose availability to the fetuses. Each fetus requires 30–40 g of glucose/day in late gestation, which represents a significant percentage of the ewe’s glucose production and which is preferentially directed to supporting the fetuses rather than the ewe. This is because approximately 70% of fetal growth takes place in the last 6 weeks of pregnancy. Mobilization of fat stores is increased in late gestation as a method of assuring adequate energy in the face of increased demands of the developing fetuses and impending lactation. However, in a negative energy balance, this increased mobilization may overwhelm the liver’s capacity and result in hepatic lipidosis with subsequent impairment of function [11]. Ewes with hepatic lipidosis have an ineffective gluconeogenic response to the continued, preferential demands for glucose by the growing fetuses resulting in hypoglycemia, more lipid mobilization and accumulation of ketone bodies and cortisol. 80% of ewes have a high plasma cortisol concentration. This could be the consequence of increased adrenal output or reduced excretion by the liver [17]. The reason for this predisposition is not known. Twin bearing ewes appear to have more difficulty in producing glucose and clearing ketone bodies, thus increasing their susceptibility to pregnancy toxemia. The subsequent disease and metabolic changes are associated with excessive lipid mobilization [8, 10].
In late gestation, the liver increases gluconeogenesis to facilitate glucose availability to the fetuses. Each fetus requires 30–40 g of glucose/day in late gestation, which represents a significant percentage of the ewe’s glucose production and which is preferentially directed to supporting the fetuses rather than the ewe. This is because approximately 70% of fetal growth takes place in the last 6 weeks of pregnancy. Mobilization of fat stores is increased in late gestation as a method of assuring adequate energy in the face of increased demands of the developing fetuses and impending lactation. However, in a negative energy balance, this increased mobilization may overwhelm the liver’s capacity and result in hepatic lipidosis with subsequent impairment of function [11]. Ewes with hepatic lipidosis have an ineffective gluconeogenic response to the continued, preferential demands for glucose by the growing fetuses resulting in hypoglycemia, more lipid mobilization and accumulation of ketone bodies and cortisol. 80% of ewes have a high plasma cortisol concentration. This could be the consequence of increased adrenal output or reduced excretion by the liver [17]. The reason for this predisposition is not known. Twin bearing ewes appear to have more difficulty in producing glucose and clearing ketone bodies, thus increasing their susceptibility to pregnancy toxemia. The subsequent disease and metabolic changes are associated with excessive lipid mobilization [8, 10].

According to Sargison [6], Ketone bodies (BHBA and acetoadacetate) are strong acids and their accumulation in the blood leads to metabolic acidosis. Schlumbohm and Harmeyer [18] revealed that high BHBA impairs glucose metabolism. This further suppresses endogenous glucose production and exaggerates the development of ketosis. Since hyperketonemia exerts several adverse effects, e.g. on energy balance and glucose metabolism it appears that the impairment of ketone bodies disposal in late pregnancy facilitates development of Pregnancy toxemia, especially in ewes carrying twins [19].

The disease manifests with an encephalopathy, believed to be a hypoglycemic encephalopathy resulting from hypoglycemia in the early stages of the disease. The encephalopathy and the disease are frequently not reversible unless treated in the early stages. The onset of clinical signs is always preceded by hypoglycemia and hyperketonemia, although the onset of signs is not related to minimum blood glucose or maximum ketone levels [20].

Lesions

Pale, swollen and friable fatty liver and enlarged adrenal glands are common findings. In addition, the uterus of the affected ewe usually has more than one fetus [21]. If fetuses are in a state of decomposition it indicates premortem death. Very thin ewes may appear starved with serous atrophy of the kidney and heart fat [11].

Clinical findings

The earliest signs of pregnancy toxemia are separation from the group, failure to come up for feeding in pastoral animals or standing near the trough with the group of sheep but not eating in housed animals, altered mental state and apparent blindness, which is manifested by an alert bearing but a disinclination to move. They also lie down, become sluggish and show a loss of appetite. Affected ewes walk unsteadily, appear dull and they show little fear of humans or dogs. Blindness often results and eventually there can be convulsions, grinding of the teeth and labored respiration. If it is forced to move, it blunders into objects and when an obstacle is encountered, presses against it with its head. Many affected ewes stand in water troughs all day and lap the water [1].

In later stages, marked drowsiness develops and episodes of more severe nervous signs occur but they may be infrequent and are easily missed. In these episodes, tremors of the muscles of the head cause twitching of the lips, champing of the jaws and salivation. These are accompanied by a cog-wheel type of clonic contraction of the cervical muscles causing dorsoflexion or lateral deviation of the head, followed by circling. The muscle tremor usually spreads to involve the whole body and the ewe falls with convulsions. The ewe lies quietly after each convulsion and rises normally afterwards but is still blind. In the periods between convulsions there is marked drowsiness which may be accompanied by head pressing, the assumption of abnormal postures including unusual positions of the limbs and elevation of the chin - the ‘stargazing’ posture - and in coordination and falling when attempting to walk. A smell of ketones may be detectable on the breath of the ewe. Affected ewes usually become recumbent in 3-4 days and remain in a state of profound depression or coma for a further 3-4 days. Most cases develop 1-3 weeks before lambing. Onset earlier than day 140 of gestation is associated with more severe disease and increased risk of mortality [11].
Diagnosis

The diagnosis of pregnancy toxemia is based on history and clinical findings but confirmatory diagnosis requires blood analysis [22]. Laboratory findings in individual ewes may include hypoglycemia, elevated urine ketone levels, elevated BHBA levels and frequently hypocalcaemia and hyperkalemia due to severe ketoacidosis. Low blood glucose level indicates pregnancy toxemia as well as CSF glucose level [20]. However, hypoglycemia is not a consistent finding. With up to 40% of cases having normal glucose levels while up to 20% having hyperglycemia. These gave rise to the idea that hypoglycemia might indicate that the fetuses are alive and hyperglycemia that the fetuses are dead. Wastney et al. [22] suggested that the hyperglycemia occurs because fetal death removes the suppressing effect of the fetus on hepatic gluconeogenesis [16], referred to the existence of a marked hyperglycemia in terminal cases. If the diagnosis needs further confirmation, BHBA is a more reliable indicator of disease severity than blood glucose levels. Non esterified fatty acids can also be elevated, indicating likely hepatic lipidosis resulting in impaired hepatic function [2, 8].

For an accurate diagnosis, a differential diagnosis is important to determine pregnancy toxemia from other disorders with similar signs such as hypocalcaemia or hypomagnesaemia. These can be differentiated based on clinical and laboratory findings. Typical signs and indications that differentiate pregnancy toxemia from hypocalcaemia includes: in pregnancy toxemia there is slow progression of the disease with death after 5-7 days where as in hypocalcaemia there is rapid progression of the disease with death after 6-24 hours. Elevation of the chin (‘star-gazing’) with slow progression to recumbence over 2-3 days after onset of initial signs is seen in pregnancy toxemia but during hypocalcaemia rapid progression to recumbence over 3-4 hours and sternal recumbence with the head stretched out and chin on the ground with legs folded beneath or stretched out behind the ewe is usual. In post-mortem examination liver is yellowish with a fine mottled appearance characteristic of pregnancy toxemia but there are usually no significant and characteristic observable post mortem findings in hypocalcaemia. In response to treatment in pregnancy toxemia, there is no response to dose rates of hypocalcaemia treatment with commercial calcium solutions. Usually poor and slow response to doses of glucose or energy with best responses seen if treated whilst ewes are still alert.

Treatment

Successful treatment of pregnancy toxemia requires early detection and steps to quickly meet the energy (glucose) needs of the affected ewe. Therapy requires the correction of fluid, electrolytes and acid-base disturbances in addition to replacement therapy with glucose. Oral propylene glycol or corn syrup are quick sources of energy and should be given at the rate of 200 ml four times daily along with 3-4 liters of concentrated oral rehydration fluid [23]. Ewe treated very early in the course of the disease generally responds favorably, but response to therapy is poor once ewe has become recumbent. So if the ewe is already comatose, treatment should focus on the rest of the flock [11].

Parenteral therapy

Therapy with glucose should be accompanied by the IV injection of isotonic sodium bicarbonate or lactated Ringer’s solution and the administration of further fluids by a stomach tube. Treatment with recombinant bovine somatotrophin (0.15 mg/kg body weight) in conjunction with dextrose and electrolytes may result in a shorter duration of treatment, improves ewe survival and results in a greater viability of lambs born but reported results are not impressive [24].

Oral therapy

Propylene glycol or glycerin (110 gram per day) given by mouth is used to support parenteral glucose therapy. Success is reported with the oral drenching, every 4-8 hours, of 160 ml of a solution containing 45 g glucose, 8.5 g sodium chloride, 6.17 g glycine and electrolytes, which is available commercially as a concentrated oral rehydration solution. Reported recovery rates are 90% in early cases and 55% in advanced cases [23]. Treatment with insulin in addition to treatment with oral glucose precursors and electrolytes shows a significantly higher survival rate (87%) compared with treatment with oral glucose precursors and electrolytes alone [25].

Caesarean section

In advanced cases, a Caesarean section (C-section) may need to be performed to remove fetuses and save the ewe’s life. Once animals become recumbent and refuse to get up, medical treatment is usually unrewarding.
and a C-section is recommended to immediately remove the negative energy drain of fetuses from the mother [26]. It can be used as an alternative to replacement therapy. If ewes are in the early stages of the disease, removal of the lambs by C-section has the greatest success rate where the demand for glucose by the lambs is immediately removed and both the ewe and the lambs have a high chance of survival provided the C-section is conducted before there is irreversible brain damage in the ewe and the lambs are close to term. If the ewe is in the recumbent stage, then her chance of survival is low. C-section can still offer the chance of survival for lambs but also less viable at this stage and may be dead. Induction of parturition with prostaglandin F2α is a further option but should only be used if the ewe is in the early stage of the disease as lambs will be delivered no earlier than 36 hours after therapy and often later. If the ewe is judged unlikely to survive this period, C-section is a better option [1].

Control and prevention

Control. When clinical cases occur, the rest of the flock should be examined daily for any evidence of ketosis and affected ewes should be treated immediately with propylene glycol or glycerol or oral glucose/glycine/ electrolyte solutions. Supplementary feeding of the flock should be commenced immediately with particular attention given to an increase in carbohydrate intake. Cereal grain starting at 0.5 lb/head per day and increasing to 2 lb/head per day (0.25-1kg/head per day) for large frame breeds is recommended [27].

Prevention. Prevention of pregnancy toxemia involves three managemental goals. Adequate nutrition should be provided during the final weeks of pregnancy, there should be ample room for exercise and control of other conditions that might result in reduced feed intake or increase energy demand such as foot rot or parasitism [28]. Prevention can be readily achieved by nutritional means and is far more rewarding than therapy. Ewes must be fed in relation to their changing energy needs throughout the reproductive cycle [8]. Thus, ewes should not enter the last 6 weeks of gestation with a BCS less than 2.5. This can be prevented by good feeding management and ration formulation [11]. One major factor in the nutrition of the pregnant ewe is that of the unborn lamb. The gestation period in sheep is short as compared to many other animals and the fetal demand for nutrients and glucose is at its greatest during the last 2 months of pregnancy. In fact, about 70 % of the growth of the fetus occurs during the last 6 weeks of pregnancy; if twins are present, the increase in total weight is considerable. The total metabolic rate increases by at least 50 percent during late pregnancy. It has been shown that late pregnant ewes require about 50 % more feed if bearing a single lamb and about 75 % more feed if carrying twins. The increased amount of feed, however, sometimes exceeds the sheep’s digestive capacity unless grain is substituted for part of the hay. Multiple fetuses will tend to crowd the animals digestive system and hence limiting intake, this is where concentrates can help. During the last 6 wk of gestation, grain is required as a source of carbohydrates in the ration to maintain the health of multiple-bearing ewes. Amount varies depending on forage quality, adult body weight, condition score and number of fetuses [11].

Maiden ewes should feed as a separate group in order to provide the requirement for growth in addition to the requirement for pregnancy. Attention should also be given to broken-mouthed ewes to ensure that they are maintaining an adequate body condition. Sudden changes in type of feed should be avoided and extra feed should be provided during bad weather. Shelter sheds should be available and in purely pastoral areas, lambing should not be planned before the pasture is well grown. A high incidence is often encountered in small, well-fed flocks where the ewes get insufficient exercise. In such circumstances the ewes should be walked 30 minutes daily and, if pasture is available, only concentrate should be fed so that they will be encouraged to forage for themselves [1].

CONCLUSION AND RECOMENDATION

The principal cause of pregnancy toxemia is low blood sugar (glucose) in relation with high energy demand of the fetus especially occurs in pregnant ewes carrying twins. Onset of the disease is often triggered by one of several types of stress including nutritional or inclement weather. The disease is most prevalent in ewes carrying two or more lambs. The disease also affects ewes that are extremely fat or excessively thin. Diagnosis of the disease is based on clinical sign, history, and clinical tests of low glucose, high ketones, and necropsy findings. Successful treatment of pregnancy toxemia requires early detection and quick replacement therapy with glucose. Therefore; it can be recommended to feed high energy concentrates and grains during the last month of pregnancy and follow proper management to minimize and avoid farm losses.

DECLARATIONS

Acknowledgements
This work was supported by the University of Gondar, college of veterinary medicine and animal sciences.

Authors’ Contributions
A. Kelay participated in the planning, collecting the required articles for review and execution of the review as a leader. A. Assefa participated in the critically revision of the manuscript for important intellectual contents and all authors of this review paper have read and approved the final version submitted.

Competing interests
The authors declare that they have no competing interests.

REFERENCES

Manuscript as Original Research Paper, Review and Case Reports are invited for rapid peer-review publishing in the Journal of Life Science and Biomedicine. Considered subject areas include: Biocontrol, Biochemistry, Biotechnology, Bioengineering, Neurobiology... view full aims and scope

Submission
The manuscript and other correspondence should preferentially be submit online. Please embed all figures and tables in the manuscript to become one single file for submission. Once submission is complete, the system will generate a manuscript ID and will send an email regarding your submission. Meanwhile, the authors can submit or track articles via editors@jlsb.science-line.com; jlsb.editors@gmail.com. All manuscripts must be checked (by English native speaker) and submitted in English for evaluation (in totally confidential and impartial way).

Supplementary information
The online submission form allows supplementary information to be submitted together with the main manuscript file and covering letter. If you have more than one supplementary files, you can submit the extra ones by email after the initial submission. Author guidelines are specific for each journal. Our Word template can assist you by modifying your page layout, text formatting, headings, title page, image placement, and citations/references such that they agree with the guidelines of journal. If you believe your article is fully edited per journal style, please use our MS Word template before submission. Supplementary materials may include figures, tables, methods, videos, and other materials. They are available online linked to the original published article. Supplementary tables and figures should be labeled with a "S", e.g. "Table S1" and "Figure S1". The maximum file size for supplementary materials is 10MB each. Please keep the files as small possible to avoid the frustrations experienced by readers with downloading large files.

Submission to the Journal is on the understanding that
1. The article has not been previously published in any other form and is not under consideration for publication elsewhere;
2. All authors have approved the submission and have obtained permission for publish work.
3. Researchers have proper regard for conservation and animal welfare considerations. Attention is drawn to the 'Guidelines for the Treatment of Animals in Research and Teaching'. Any possible adverse consequences of the work for populations or individual organisms must be weighed against the possible gains in knowledge and its practical applications. If the approval of an ethics committee is required, please provide the name of the committee and the approval number obtained.

Ethics Committee Approval
Experimental research involving human or animals should have been approved by author's institutional review board or ethics committee. This information can be mentioned in the manuscript including the name of the board/committee that gave the approval. Investigations involving humans will have been performed in accordance with the principles of Declaration of Helsinki. And the use of animals in experiments will have observed the Interdisciplinary Principles and Guidelines for the Use of Animals in Research, Testing, and Education by the New York Academy of Sciences, Ad Hoc Animal Research Committee. If the manuscript contains photos or parts of photos of patients, informed consent from each patient should be obtained. Patient’s identities and privacy should be carefully protected in the manuscript.

Graphical Abstract
Authors should provide a graphical abstract (a beautifully designed feature figure) to represent the paper aiming to catch the attention and interest of readers. Graphical abstract will be published online in the table of content. The graphical abstract should be colored, and kept within an area of 12 cm (width) x 6 cm (height) or with similar format. Image should have a minimum resolution of 300 dpi and line art 1200dpi.

Note: Height of the image should be no more than the width. Please avoid putting too much information into the graphical abstract as it occupies only a small space. Authors can provide the graphical abstract in the format of PDF, Word, PowerPoint, jpg, or png, after a manuscript is accepted for publication. For preparing a Professional Graphical Abstract, please click here.
Presentation of the article

Main Format
First page of the manuscripts must be properly identified by the title and the name(s) of the author(s). It should be typed in Times New Roman (font sizes: 17pt in capitalization for the title, 10pt for the section headings in the body of the text and the main text, double spaced, in A4 format with 2cm margins (both doc./docx formats). All pages and lines of the main text should be numbered consecutively throughout the manuscript. Abbreviations in the article title are not allowed. Manuscripts should be provided as.

- INTRODUCTION (clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution)
- MATERIAL AND METHOD (should be complete enough to allow experiments to be reproduced)
- RESULTS
- DISCUSSION
- CONCLUSION
- DECLARATIONS (Acknowledgements, Consent to publish, Competing interests, Authors’ contributions, and Availability of data etc.)
- REFERENCES
- Tables
- Figures
- Graphs

Results and Discussion can be presented jointly. Discussion and Conclusion can be presented jointly.

Article Sections Format

Title should be a brief phrase describing the contents of the paper. The first letter of each word in title should use upper case. The Title Page should include the author(s)'s full names and affiliations, the name of the corresponding author along with phone and e-mail information. Present address (es) of author(s) should appear as a footnote.

Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The abstract should be 150 to 300 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 8 key words that will provide indexing references should be listed.

Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Material and Method should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail. The ethical approval for using human and animals in the researches should be indicated in this section with a separated title.

Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the author(s)'s experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. In case of the effectiveness of a particular drug or other substances as inhibitor in biological or biochemical processes, the results should be provided as IC₅₀ (half maximal inhibitory concentration) or similar appropriate manner.

Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

Conclusion should be brief and tight about the importance of the work or suggest the potential applications and extensions. This section should not be similar to the Abstract content.

Declarations including Acknowledgements, Author contribution, Competing interests, Consent to publish, and Availability of data etc.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph forms or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.
Declarations
Please ensure that the sections: Ethics (and consent to participate, if any), Acknowledgements, Author contribution, Competing interests, Consent to publish, Availability of data and materials are included at the end of your manuscript in a Declarations section.

Acknowledgements
We encourage authors to include an Acknowledgements section. Please acknowledge anyone who contributed towards the study by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include their source(s) of funding. Please also acknowledge anyone who contributed materials essential for the study. Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements. Please list the source(s) of funding for the study, for each author, and for the manuscript preparation in the acknowledgements section. Authors must describe the role of the funding body, if any, in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Author contribution
For manuscripts with more than one author, JLSB require an Author Contributions section to be placed after the Acknowledgements section. An 'author' is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; and 3) have given final approval of the version to be published. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of funding, collection of data, or general supervision of the research group, alone, does not justify authorship. We suggest the following format/example (please use initials to refer to each author's contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

For authors that equally participated in a study please write 'All/Both authors contributed equally to this work.' Contributors who do not meet the criteria for authorship should be listed in an acknowledgements section.

Competing interests
Competing interests that might interfere with the objective presentation of the research findings contained in the manuscript should be declared in a paragraph heading "Competing interests" (after Acknowledgment or Author Contribution sections). Examples of competing interests are ownership of stock in a company, commercial grants, board membership, etc. If there is no competing interest, please use the statement "The authors declare that they have no competing interests.". Journal of Life Science and Biomedicine adheres to the definition of authorship set up by The International Committee of Medical Journal Editors (ICMJE). According to the ICMJE authorship criteria should be based on 1) substantial contributions to conception and design of, or acquisition of data or analysis and interpretation of data, 2) drafting the article or revising it critically for important intellectual content and 3) final approval of the version to be published. Authors should meet conditions 1, 2 and 3. It is a requirement that all authors have been accredited as appropriate upon submission of the manuscript. Contributors who do not qualify as authors should be mentioned under Acknowledgements.

Consent to publish
Please include a 'Consent for publication section in your manuscript. If your manuscript contains any individual person's data in any form (including individual details, images or videos), consent to publish must be obtained from that person, or in the case of children, their parent or legal guardian. All presentations of case reports must have consent to publish. You can use your institutional consent form or our consent form if you prefer. You should not send the form to us on submission, but we may request to see a copy at any stage (including after publication). If your manuscript does not contain any individual persons data, please state "Not applicable" in this section.

Change in authorship
We do not allow any change in authorship after provisional acceptance. We cannot allow any addition, deletion or change in sequence of author name. We have this policy to prevent the fraud.

Data deposition
Nucleic acid sequences, protein sequences, and atomic coordinates should be deposited in an appropriate database in time for the accession number to be included in the published article. In computational studies where the sequence information is unacceptable for inclusion in databases because of lack of experimental validation, the sequences must be published as an additional file with the article.

REFERENCES
A JLSB reference style for EndNote may be found here. However, we prefer Vancouver referencing style that is often used in medicine and the natural sciences. Uniform requirements for manuscripts submitted to Biomedical Journals, published by International Committee of Medical Journal Editors, includes a list with examples of references https://www.nlm.nih.gov/bsd/uniform_requirements.html in the Vancouver style.

References should be numbered consecutively and cited in the text by number in square brackets [1, 2] instead of parentheses (and not by author and date). References should not be formatted as footnotes. Avoid putting personal communications and unpublished observations as references. All the cited papers in the text must be listed in References. All the papers in References must be cited in the text. Where available, URLs for the references should be provided.
Examples (at the text, blue highlighted)

Smit [1] ...; Smit and Janak [2]...; Nurai et al. [3] reported that ; ... [1], --- [2, 3], --- [3-7].

The references at the end of this document are in the preferred referencing style. Give all authors’ names; do not use “et al.” unless there are six authors or more. Use a space after authors’ initials. Papers that have not been published should be cited as “unpublished”. Papers that have been accepted for publication, but not yet specified for an issue should be cited as “to be published”. Papers that have been submitted for publication should be cited as “submitted for publication”. Capitalize only the first word in a paper title, except for proper nouns and element symbols. For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation.

Acceptable Examples (at References section)

For Journals:

For In press manuscripts (maximum 2):

For symposia reports and abstracts:

For Conference:
Skinner J, Fleener B and Rinchiuso M. 2003. Examining the Relationship between Supervisors and Subordinate Feeling of Empowerment with LMX as A Possible Moderator. 24th Annual Conference for Industrial Organizational Behavior. DOI, Link

For Book:

For Web Site:

Nomenclature and Abbreviations

Nomenclature should follow that given in NCBI web page and Chemical Abstracts. Standard abbreviations are preferable. If a new abbreviation is used, it should be defined at its first usage. Abbreviations should be presented in one paragraph, in the format: “term: definition”. Please separate the items by “;”. E.g. ANN: artificial neural network; CFS: closed form solution; ...

Abbreviations of units should conform with those shown below:

<table>
<thead>
<tr>
<th>Standard Unit</th>
<th>Abbreviation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decilitre</td>
<td>dl</td>
<td>dL</td>
</tr>
<tr>
<td>Kilogram</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>Milligram</td>
<td>mg</td>
<td>mg</td>
</tr>
<tr>
<td>Micrometer</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Molar</td>
<td>mol</td>
<td>mol</td>
</tr>
<tr>
<td>Percent</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Other abbreviations and symbols should follow the recommendations on units, symbols and abbreviations: in "A guide for Biological and Medical Editors and Authors (the Royal Society of Medicine London 1977). Papers that have not been published should be cited as "unpublished". Papers that have been accepted for publication, but not yet specified for an issue should be cited as "to be published". Papers that have been submitted for publication should be cited as "submitted for publication".

Formulae, numbers and symbols

1. Typewritten formulae are preferred. Subscripts and superscripts are important. Check disparities between zero (0) and the letter o, and between one (1) and the letter I.
2. Describe all symbols immediately after the equation in which they are first used.
3. For simple fractions, use the solidus (/), e.g. 10 /38.
4. Equations should be presented into parentheses on the right-hand side, in tandem.
5. Levels of statistical significance which can be used without further explanations are *p < 0.05, **p < 0.01, and ***p < 0.001.
6. In the English articles, a decimal point should be used instead of a decimal comma.
7. Use Symbol fonts for “±”, “≤” and “≥” (avoid underline).
8. In chemical formulae, valence of ions should be given, e.g. Ca2+ and CO32-. not as Ca++ or CO3.
9. Numbers up to 10 should be written in the text by words. Numbers above 1000 are recommended to be given as 10 powered x.
10. Greek letters should be explained in the margins with their names as follows: Αα - alpha, Ββ - beta, Γγ - gamma, ΔΔ - delta, Εε - epsilon, Ζζ - zeta, Ηη - eta, Θθ - theta, Ιι - iota, Κκ - kappa, Λλ - lambda, Μμ - mu, Νν - nu, Ξξ - xi, Οο - omicron, Ππ - pi, Ρρ - rho, Σσ - sigma, Ττ - tau, Υυ - upsilon, Φφ - phi, Χχ - chi, Ψψ - psi, Ωω - omega. Please avoid using math equations in Word whenever possible, as they have to be replaced by images in xml full text.
Review/Decisions/Processing/Policy

Firstly, all manuscripts will be checked by Docol©c, a plagiarism finding tool. The received papers with plagiarism rate of more than 30% will be rejected. Manuscripts that are judged to be of insufficient quality or unlikely to be competitive enough for publication will be returned to the authors at the initial stage. The remaining manuscripts go through a single-blind review process by external reviewers selected by section editor of JLSB, who are research workers specializing in the relevant field of study. One unfavourable review means that the paper will not be published and possible decisions are: accept as is, minor revision, major revision, or reject. The corresponding authors should submit back their revisions within 14 days in the case of minor revision, or 30 days in the case of major revision. Manuscripts with significant results are typically published at the highest priority. The editor who received the final revisions from the corresponding authors shall not be held responsible for any mistakes shown in the final publication.

The submissions will be processed free of charge for invited authors, authors of hot papers, and corresponding authors who are editorial board members of the Journal of Life Science and Biomedicine. This journal encourages the academic institutions in low-income countries to publish high quality scientific results, free of charges.

Plagiarism

Manuscripts are screened for plagiarism by Docol©c, before or during publication, and if found (more than 30% duplication limit) they will be rejected at any stage of processing. If we discovered accidental duplicates of published article(s) that are determined to violate our journal publishing ethics guidelines (such as multiple submission, bogus claims of authorship, plagiarism, fraudulent use of data or the like), the article will be “Withdrawn” from SCIENCELINE database. Withdrawn means that the article content (HTML and PDF) is removed and replaced with a HTML page and PDF simply stating that the article has been withdrawn according to the Scienceline Policy on Published Article Withdrawal.

Date of issue

All accepted articles are published bimonthly around 25th of January, March, May, July, September and November, each year in full text on the internet.

The OA policy

Journal of Life Science and Biomedicine is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access.

Submission Preparation Checklist

- Authors are required to check off their submission's compliance with all of the following items, and submissions may be returned to authors that do not adhere to the following guidelines.
- The submission has not been previously published, nor is it before another journal for consideration (or an explanation has been provided in Comments to the Editor).
- The submission file is in Microsoft Word, RTF, or PDF document file format. Where available, URLs for the references have been provided.
- The text is single-spaced; uses a 12-point font; and all illustrations, figures, and tables are placed within the text at the appropriate points, rather than at the end. The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scienceline Publication Ltd is a limited liability non-profit non-stock corporation incorporated in Turkey, and also is registered in Iran. Scienceline journals that concurrently belong to many societies, universities and research institutes, publishes internationally peer-reviewed open access articles and believe in sharing of new scientific knowledge and vital research in the fields of life and natural sciences, animal sciences, engineering, art, linguistic, management, social and economic sciences all over the world. Scienceline journals include:

- **Online Journal of Animal and Feed Research**
 - ISSN: 2228-7701; Bi-monthly
 - View Journal | Editorial Board
 - Email: editors@ojaf.ir
 - Submit Online >>

- **Journal of Civil Engineering and Urbanism**
 - ISSN: 2262-0430; Bi-monthly
 - View Journal | Editorial Board
 - Email: ojceu@ojceu.ir
 - Submit Online >>

- **Journal of Life Sciences and Biomedicine**
 - ISSN: 2251-9939; Bi-monthly
 - View Journal | Editorial Board
 - Email: editors@jlsb.science-line.com
 - Submit Online >>

- **Asian Journal of Medical and Pharmaceutical Researches**
 - ISSN: 2322-4789; Quarterly
 - View Journal | Editorial Board
 - Email: editor@ajmpr.science-line.com
 - Submit Online >>

- **Journal of World's Poultry Research**
 - ISSN: 2322-455X; Quarterly
 - View Journal | Editorial Board
 - Email: editor@jwpr.science-line.com
 - Submit Online >>

- **World's Veterinary Journal**
 - ISSN: 2322-4568; Quarterly
 - View Journal | Editorial Board
 - Email: editor@wvj.science-line.com
 - Submit Online >>

- **Journal of Educational and Management Studies**
 - ISSN: 2322-4770; Quarterly
 - View Journal | Editorial Board
 - Email: info@jems.science-line.com
 - Submit Online >>

- **Journal of World's Electrical Engineering and Technology**
 - ISSN: 2322-5114; Irregular
 - View Journal | Editorial Board
 - Email: editor@jweet.science-line.com
 - Submit Online >>

- **Journal of Art and Architecture Studies**
 - ISSN: 2383-1553; Irregular
 - View Journal | Editorial Board
 - Email: jaas@science-line.com
 - Submit Online >>

- **Asian Journal of Social and Economic Sciences**
 - ISSN: 2383-0948; Quarterly
 - View Journal | Editorial Board
 - Email: ajses@science-line.com
 - Submit Online >>

- **Journal of Applied Business and Finance Researches**
 - ISSN: 2382-9907; Quarterly
 - View Journal | Editorial Board
 - Email: jabfr@science-line.com
 - Submit Online >>

- **Scientific Journal of Mechanical and Industrial Engineering**
 - ISSN: 2383-0980; Quarterly
 - View Journal | Editorial Board
 - Email: sjmie@science-line.com
 - Submit Online >>

Copyright © 2018. All Rights Reserved. Scienceline Journals
Email: administrator@science-line.com